

Applications that directly or indirectly stream webcam video are commonly

available today. This paper intends to give a detailed review on an application built

using Live555 and x264 library set, supported by V4L2 driver APIs, that could

stream out live webcam video to any number of requesting clients as per request.

The different modules necessary for live webcam streaming would be uncovered in

this presentation in a sequential manner. The analysis put forth incorporates the

issues circling the streamer application as well.

Abstract

It has been a few decades now since video technology has come into action. In the

earlier days video was captured and transmitted in analog form. The introduction of

digital integrated circuits and computers, marked a new beginning for video

technology - Digitalization. Currently we have all sorts of diverse and complex

technologies interlinked with the video domain. This paper intends to give a detailed

explanation on one such area related with video – Streaming, and to be precise,

Webcam streaming. Raw Video from the webcam has to pass through a whole lot of

phases before it is suitable for transmission. The sections following would brush

through all the necessary pathways the stream has to flow through to finally be

received by the client.

Introduction

I. Video Basics

A. On Demand Streaming

With the emergence of Pentium and its

successor chips (dies), video and audio

playing were becoming a reality for the

consumer grade PC's. Back then video files

were stored in CD-ROMS or were

downloaded from remote servers. Network

delivery of media was still a longed reality in

those days.By the early 2000's , Internet saw

a booming increase in network bandwidth.

With the advent of powerful media

compression algorithms and more powerful

Personal Computer's, streaming delivery of

media had become possible.

The term streaming is used to describe a

method of relaying data over a computer

network as a steady continuous flow of

bytes, allowing playback to proceed while

subsequent data is being received ”. Instant

playback was the greatest advantage posed

by live streaming on comparison with

'Download and play' which could cost hours

on a slow network.

B. Live Streaming

Streaming can mainly be of 2 types,

On demand Streaming and Live Streaming.

The former deals with previously recorded

and compressed media. Media files are stored

at specific servers and are delivered to one or

more clients on request (on Demand). Today

we have thousands of such servers ready to

stream media files on demand. a few of such

servers are You tube, Vimeo, TED etc.

When it comes to Live Streaming, the entire

process starting with the capture of video to

the final delivery of processed video is done

on the course. This process is highly resource

exhaustive. It could require significant

computational resource often using specific

Fig 1: On Demand Streaming

Fig 2: Live Streaming

From the diagram it is clear that the packets

transferred at a constant bitrate reaches the

receiver in a highly disoriented manner

making it difficult for playback. The packets

are streamed without jitter by streaming

from a playback buffer. This introduces the

playback delay. Live Streaming introduces

yet another delay for transmission, mainly

taking into account the video capture and

subsequent recording. The media needs to be

compressed along the flow before reception

at the client side.

II. Webcam Streaming

Webcams are video cameras that are often

embedded into laptops. When it comes to

desktop, webcams come in different models

with the support driver CD-ROM. Most

webcams would have standardized

applications that can access them for

capture/recording purpose.

The webcam streaming application captures

the video, compresses it, does some pixel

level manipulations and later on sends it over

the Internet, on demand to any number of

requesting clients (VLC, open RTSP by

Live555). Here 'on- demand' doesn't mean a

stored playback of the webcam video but

rather, producing the live stream when the

client requests for it. The application can be

better explained as an intermediary. It serves

as a proxy between the back end webcam

and any number of front end clients.

Each client receives a unicast stream from

the webcam on demand. The webcam

streamer actually isolates the webcam

module (Hardware) from the requesting cli-

ent (VLC for instance).

Fig 3: Block Chart

The application is a cascaded assembly of 2

major sections: Capture/Encode section and

Streaming section. This isn't purely a serial

arrangement, rather the sections interact

with each other accordingly.

The block diagram makes it clear that the

application is asynchronous. Looking into

the diagram, the yellow blocks encompasses

the Capture/Encode section and the blue

ones, Streaming section. The red ones are

external to the application and the purple

ones shows the state of the application.

The Initial state of the application can be

considered as 'not running' or 'yet to start'.

When the application is executed, the

Streamer section does the initial job of

setting up an RTSP server. Following the

initialization, the Webcam Streamer enters

an event loop. Event loops are

programming constructs that waits for and

dispatches events or messages in a

program. Applications developed using

Live555 library set are event driven in

nature. The application goes into a wait

state constantly monitoring a few

parameters. When a client say, VLC

requests for a stream, the event loop

breaks the wait and calls the

corresponding event handlers. A smooth

transfer of control to the Capture/Encode

module happens consequently.V4L2 also

known as Video4Linux2, a collection of

device drivers and API support, helps in the

capture of live video stream from the

webcam module.

 The captured video is transferred as such

to a pixel manipulation unit namely, PA to

PL block.

The Packed to Planar block converts the

raw packed format YUYV data to planar

YUV4:2:0. This will be explained in depth in

the coming sections. The raw video cap-

tured can account to several Megabytes/

minute depending on the resolution.

Fortunately the Encoder Block does the job

of compressing the video to achieve

excellent size reduction. H264 video

encoding has been used in the application

with astounding compression statistics. Raw

video capture of 40 MB (50 frames) could

be diminished to a few 100 KBs!

The Capture/Encoder module switches its

control back to Streaming Section handing

over the compressed video data as network

abstraction layer units (NAL units). The

streaming module delivers the data to the

client as RTP packets until the client closes

the session.

The application is a cascaded assembly of 2

major sections: Capture/Encode section and

Streaming section. This isn't purely a serial

arrangement, rather the sections interact

with each other accordingly.

The block diagram makes it clear that the

application is asynchronous. Looking into

the diagram, the yellow blocks

encompasses the Capture/Encode section

and the blue ones, Streaming section. The

red ones are external to the application and

the purple ones shows the state of the

application.

The Initial state of the application can be

considered as 'not running' or 'yet to

start'. When the application is executed, the

Streamer section does the initial job of

setting up an RTSP server. Following the

initialization, the Webcam Streamer enters

an event loop. Event loops are

programming constructs that waits for and

dispatches events or messages in a

program. Applications developed using

Live555 library set are event driven in

nature. The application goes into a wait

state constantly monitoring a few

parameters. When a client say, VLC

requests for a stream, the event loop

breaks the wait and calls the corresponding

event handlers. A smooth transfer of

control to the Capture/Encode module

happens consequently. V4L2 also known as

Video4Linux2, a collection of device drivers

and API support, helps in the capture of live

video stream from the webcam module. The

captured video is transferred as such to a

pixel manipulation unit namely, PA to PL

block. The Packed to Planar block converts

the raw packed format YUYV data to planar

YUV4:2:0. This will be explained in depth in

the coming sections. The raw video

captured can account to several

Megabytes/minute depending on the

resolution. Fortunately the Encoder Block

does the job of compressing the video to

achieve excellent size reduction. H264

video encoding has been used in the

application with astounding compression

statistics. Raw video capture of 40 MB (50

frames) could be diminished to a few 100

KBs!

The Internet primitively was designed to

support data communications. Much of the

data transfers were accounted from e-mails

and file transfers. As the number of nodes

and users started increasing exponentially,

the need for multimedia communication

over the Internet emerged[2]. In response

to this, researchers came up with a family of

protocols, comprising Real-Time

Transmission Protocol (RTP), its control

part Real-Time Transmission Control

Protocol (RTCP) and the network remote

control, Real-Time Streaming Protocol

(RTSP).

RTP, developed by Internet Engineering

Task Force (IETF) is an Internet standard

protocol used for transmission of real-time

multimedia as well as media on-demand.

The RTP standard in effect details a couple

of protocols: RTP and RTCP. While RTP is

used for transmission of media across the

network, RTCP is used for exchange of

Quality Of Service (QOS) parameters.

Though RTP runs over UDP/IP in most

scenarios, special techniques can be

incorporated to encapsulate them over the

TCP/IP layer.

III. RTP-RTCP-RTCP Protocols

The Capture/Encoder module switches its

control back to Streaming Section handing

over the compressed video data as network

abstraction layer units(NAL units). The

streaming module delivers the data to the

client as RTP packets until the client closes

the session.

This has to be done with utmost care due to the stern nature of latter transport layer.

 Fig 4. RTP Protocol

RTCP, the control protocol is designed to work

hand in hand with RTP Protocol. RTCP packets

contain sender or receiver reports that provide

quality of service statistics, such as the number

of packets send, number of packets lost, inter

arrival jitter etc. If the application is adaptive in

nature, the RTCP feedback could save it from a

predicted congestion by increasing the

compression ratio. Thus the feedback RTCP

plays a crucial role in diagnostic purposes to

localize eventual problems[2].

RTSP as in RFC 2326[3], states that it is an

application layer protocol which acts as a

'network remote control'. RTSP has control

over the transfer of RTP data packets over

IP. Controls such as play, pause, record etc

resembles the available functionalities of the

present day iPods, Mp3Players etc. Though RTSP

stays out of the packet transmission liabilities, it

could enable interleaved transfer of RTCP-RTP

packets. There is no concept of an RTSP

connection. Instead, a server maintains a session

labeled by an identifier. RTSP sessions are

independent of transport layer protocols such as

TCP. During an RTSP session, the client may open

and close many reliable transport connections

(TCP) or alternatively, it may use connectionless

UDP[3]. Real Networks, Columbia University and

Netscape Communication jointly came up with

RTSP[2].

 Fig 5: RTCP Protocol

V. Capture/ Encode Section

A. Capturing Block

Capturing block lies very close to the

webcam hardware module. In fact, through

the underlying webcam driver APIs, the

Capturing block can latch the captured

chunks of raw video on to any buffer/

queue. A good understanding of V4L2 API

set could come handy while dealing with

capture modules. An essential criteria to

be noted here is the platform on which the

webcam streamer is running. V4L2 driver

API, Video for Linux two, as the name

suggests is platform specific (Linux). V4L2

stands for V4l version 2. It is a dual layered

driver system of which the upper layer is

the videodev module. The videodev

module is registered as a character device

with major number 81. Beneath videodev is

the V4L2 drivers module. The V4L2 drivers

are seen as clients by the videodev module.

When a V4L2 driver initializes, it registers

each device it will handle with videodev by

passing a structure to videodev which

contains all the V4L2 driver methods, minor

number and few other details [4]. Regular

Linux driver methods don't differ much

from the V4L2 driver methods except for a

couple of parameters. When an application

invokes a driver call, the control first moves

to the videodev method, which translates

the inode structure pointers to analogous

V4L2 structure pointers, and subsequently

calls the V4L2 driver's methods. videodev

acts as a thin shell around the V4L2 drivers

[4].

Fig 6: Interaction between User application

 and V4L2 driver

The user mode view of V4L2 is totally different.

A large set of interface calls that could be used

with C, Cpp and python have been officially

documented. A programmer's perspective

description of the same is presented below [5].

Fig 7: capture Flow Diagram

In Linux, the default capture device is

generally at /dev/video0. Any other video

source could result in a different index(/

dev/video(x)). The capture has to be opened

and queried to make sure the device is

available for capture. After the query

checks, the frame format have to be

implicitly added. Most capture modules

allow 2 to 3 different formats by default,

though, some cameras adamantly cling onto

YUYV format. The webcam streamer

application has been developed on a

platform that outputted YUYV formats

irrespective of software manipulations.

YUYV format comes under the YUV colour

space in contrast to the RGB format groups

present under RGB colour space. A detailed

account on colour spaces would be

presented later on. Once the format has

been specified, buffers are requested and

subsequentlty enqueued. On starting the

capture, a chunk of data bytes captured by

the device, is moved onto the requested

buffer. This buffer is dequeued and a

suitable handler for moving/processing the

frame is called. The process of

enqueueing-dequeueing continues unti the

capture is implicitly stopped.

Fig 8: Code Snippet

B. COLOR SPACE

A color space is a mathematical representa-

tion of a set of colors. The three most widely

used color models are RGB (for computer

graphics), YUV (for video systems) and CMYK

(for color printing) [7]. RGB color model is an

additive color model, where red, green and

blue are added together to produce a wide

spectrum of colors. A color model is a meth-

od for describing a color. Thus RGB color

model uses combination of red (R), green (G)

and blue (B) for describing an individual col-

or. So what difference does it make with col-

or space? Color spaces account for all the

different colors a color model can span.

When storing video digitally, either RGB or

YUV can be used. Each colour models have

different formats of their own for storing

video files. A few citable examples for YUV

are YUYV, YVYU, YV12 etc and for RGB –

RGB16, RGB24, RGB32 etc. To understand

the difference between these colour spac-

es, one must have a basic understanding of

how the human brain perceives images. RGB

stores video intuitively. For each pixel, RGB

holds value for red, blue and green. One of

the most commonly used formats, RGB24

allocates 24 bits for each pixels, with 8 bits

for each colour. Now that is 256 (0-255)

different shades of red, green and blue. The

colour span for RGB24 can be found out

with some easy permutations, which would

account to 16777216 different colours!

YUV in contrast stores colour the same

way as human brain works. The

core component that brain acknowledges

is brightness or luma. Y represents the

luma component and can be found out

from RGB by averaging colour channels

with different weights for each channel.

Luma is simply a positive value with 0

marking black and 255 marking white. U

and V, also known as Cb and Cr stands for

the chrominance or colour. Cr color

spectrum moves from red at one peak to

green at the other whereas Cb moves from

blue to yellow. This is one solid reason for

the emergence of the concept known as

'impossible colours' which states that it is

almost impossible to perceive certain pairs

of colour as a single colour (red+green and

yellow+blue).

 Fig 9: YUV Perception

When dealing with an image, Y can be tak-

en as the 'black and white' part of the

image while U - V as the 'coloring' part.

 Looking at the above cluster, it is evident

that it is much more easier for a person to

make out the image from the luma alone

than from the chroma counterpart. This is

exactly what YUV color model intends to

do; to pass on the luma as such with lower

amounts of chroma content (different for

different chroma subsampling).

Why use YUV can be a question pondering

many, after getting to know about the

different colour models. The older TV sets

could not support colour components.

Plugging in the Y channel could easily do

the trick in this scenario as the B/W televi-

sion takes luma as black and white ignoring

U-V channels. Thus YUV is backward

compatible. Yet another reason is size

reduction per pixel. Chroma components

can be averaged out by a factor, without

causing much quality loss for the frame/

video.

YUV formats fall into 2 different

categories, the packed formats where Y, U

and V components are packed together

and stored in a single array and the planar

formats, where each component (Y-U-V)

are stored in three different arrays and are

later on fused together to form the final

image, from three distinctive planes[13].

The raw Video output given by Webcam

Streamer is YUYV, a packed format. Now

Most video encoders directly work on

planar formats such as YUV4:2:0. YUV4:2:0

has been chosen as the output video

format for PA to PL block. The daunting

task of pixel conversion thus has to be met.

In order develop a suitable algorithm, an in

depth understanding of both these

formats are necessary.

YUYV also known as YUY2 is arranged in

the memory as shown below

C. Packed to Planar Block In this format each 4 bytes is 2 pixels. 4 bytes

would thus represent 2 Y's, 1 U and 1 V. Y

would thus be assigned to both the pixels while,

Cb and Cr are shared. The diagram explains this

well. The first four bytes when grouped

together has 2 Y bytes, Y0 corresponding to

pixel 1 and Y1 corresponding pixel 2. Both

pixels together share the U0 and V0. The

alignment is something that should be noted

here. All three components; Y-U-V are arranged

in to a single array in an ordered manner.

Packed format YUV actually finds similarity to

YUV4:2:2 in planar format.

Planar formats are quite different from the

packed formats. The suffix 4:2:0 actually

represents the chroma sub-sampling. There are

a wide variety of YUV planar formats such as

YUV4:2:0, YUV4:1:1, YUV4:2:2 each having

distinctions in the way their chrominance have

been sub-sampled. Chroma sub-sampling can be

explained with the help of a sub-sampling

scheme as shown below.

Fig 10: YUYV Representation

Planar formats are often expressed as a ratio

of three parameters (J:a:b). The scheme con-

siders 2 rows, 4 pixels each for the illustration.

The 3 parameters can be defined as

J: Horizontal Sampling reference (pixels per

row)

a: Chrominance samples present in the first

row

b: Number of chrominance sample changes

between row 1 and 2.

This clearly explains YUV4:2:0. A slab of 8 pix-

els as 2 rows of 4 pixels would contain 2

different samples of chroma is the first row

with no changes as it moves to the next row.

This is shown in the diagram. The memory

representation of such a format is employed

using 3 distinctive arrays holding Y, U and V

separately. One interesting thing to note here

is that each pixel in YUV4:2:0 image would

contain only 12 bytes in contrast to YUYV

which contains 16 bytes. Thus there is a

significant narrowing in the video data size.

Fig 11: Sub-sampling Scheme

Fig 12: YUV4:2:0 Representation

The PA to PL block does the pixel

manipulations on a frame basis. It sequentially

takes unit frames as inputs , handles it based

on the algorithm, outputs the frame to the

next block in the cascaded assembly. The

algorithm has been developed taking into

account the component arrangement and

chroma weightage.

 Let the resolution of the video be con-

sidered as M*N

 The input frame array can be safely as-

sumed to be of size [M*N*2] (16 bytes

per pixel).

 The output frame smaller in size and

can be taken as [M*N*3/2] (12 bytes

per pixel). This is separately stored as 3

different a rays.

 The Y array would take up [M*N] bytes

leaving behind [M*N/2] for U and V

together

 From the pixel sub-sampling scheme

for YUV4:2:0, it is clear that U and V

hold [M*N/4] bytes each.

 From the packed cluster of bytes, take

out all the even bytes starting from

index 0 in an ordered manner to form

the Y plane.

 Average out the U and V component

from the odd and even lines to reduce

4:2:2 chroma sub-sampling to 4:2:0

sub-sampling. The vertical resolution is

reduced to half.

Fig 13: Algorithm Implementation

D. ENCODING BLOCK

Since the early ages of digital image,

there had been a demand for compres-

sion. Though it is practical to store raw

digital images, storing raw video

sequence is just not feasible. An hour

long raw High Definition video at 25

frames per seconds would draw upto

500 GB[9]. Compressing each image on

its own would initially seem to soothe

out the issues, but actually it wont. To

overcome this problem, video

compression algorithms have made use

of the temporal redundancies in video

frames. Using such an approach, the

value of current frame could be

predicted taking into account the

previously encoded/decoded frame.

This technology of video compression is

known as motion compensation approach.

MPEG-4 advanced video coding (AVC)

standard is one such motion compensation

standard[9]. Some of the earlier standards

are MPEG-1, MPEG-2, MPEG-4 advanced

simple profile (ASP). MPEG-4 AVC gives

almost double the compression rate at the

same quality, on comparison with MPEG-4

ASP. MPEG-4 AVC was jointly developed by

Moving Pictures Expert Group (MPEG) and

ITU-T video Coding Experts Group (VCEG).

MPEG-4 AVC is also called as H.264.

Webcam Streamer Application has adopted

H.264 encoding scheme to compress video

data. The coding structure can be explained

as follows. The video sequence is split up into

frames which are further dissected into slic-

es. A slice is a group of macroblocks, which is

a block of 16x16 pixels. Macroblocks are

subdivided into sub-macroblocks of 16x8,

8x16, 8x8 pixels. Sub-macro blocks are

further broken down to structures of 8x4,

4x8, 4x4 pixels. The 4x4 is the smallest block

and the basic encoding unit in MPEG-4 AVC

standard [9]. Depending on the Encoding

Format, chrominance – luminance

informations vary. For YUV4:2:0, a 2x2 pixel

block would have chroma stored in a

sub-sampled scheme. Each such block would

have 1 byte of luma per pixel and 1 byte of

chroma per block.

Depending on the H.264 encoding scheme,

different frames such as Intra-frame

(I-frame), Predictive-frame (P-frame),

Bi-Directional frame (B-frame) maybe used.

In H.264, different encoding types are slice

dependent unlike older standards, which are

frame dependent. This implies there are

I-Slices, P-Slices, B-Slices. Intra-frame or

I-frame is a self contained frame that can be

independently decoded without any previous

frame reference. I-frames have only one

single I-Slice and are referred to as

instantaneous decoder refresh (IDR) frame.

I- frames are needed as starting points or

re-sync points. They don't use motion predic-

tion and offer negligible compression gain.

P-frames use the previous I-frame as

reference, along with motion prediction.

B-frames use one slice from the past

(reference) along with one slice from the

future (Prediction) [8].

Fig 14: Compression Efficiency

For a single frame, data can be removed by

simply moving out unnecessary information.

'Difference coding' is a methods used for for

reduction of video data between a series of

frames, used by H.264 as well as many other

encoding standards [8]. Difference coding

algorithms carefully compare frames to find

out redundant data. All the unchanged video

data in the current frame on comparison with

the older frame are removed, or are not

transmitted. Thus, a huge reduction of data is

possible for video sequences having negligible

motion vectors within them. The decoder does

the job of uncompressing the encoded video

sequence. Most video players have inbuilt

decoders within them. De-Compressors do the

job of adding back the redundant data to the

slice/frames depending upon the slice type/

frame type.

Fig 15: Difference Coding

The frames on the top are compressed on

an individual basis and are transmitted.

Motion JPEG is one such format which uses

the above mentioned scheme. Redundant

data accumulation is proportional to the

number of frames, in this scenario. The

frames on the bottom half, suggests an

adaption of difference coding algorithm,

where the motion vectors alone are

bypassed additively.

The tedious task of encoding the pixel

manipulated YUV4:2:0 video still remains.

x264 could be utilized in the application for

the same. x264 is a free library set used for

encoding video streams into MPEG-4 AVC.

It provides a wide set of command line

interfaces and APIs.

Fig 16: x264 API Set

A few important APIs have been chosen for

explanation. The x264_param_default_preset

() call sets the underlying encoder to

compress the video at a specific preset

mentioned by the parameter string. A preset

is a set of options that would provide certain

encoding speed to compression ratio.

“medium” rated encoding should neither be

too slow nor too quick. The speed has a

relationship with the encoded output quality

when it comes to live streaming, as video has

to pass through several blocks in quick

succession.

The x264_param_apply_profile() call does

the job of assigning a profile. The H.264

encoding standard is not one single

standard used in all cases, but rather a set

of tools. The profiles define which tool has

to be selected. Here the string “baseline”

suggests an H.264 standard, comprising just

the basic features for the compression

purpose [14].

x264_encoder_encode API does the

encoding based on all the above

mentioned criterion. It converts the video

data into Network Abstraction Layer (NAL)

units, which then can be used for network

streaming. According to RFC-3984 [10], a

distinction has been made between Video

Coding layer (VCL) and Network

Abstraction Layer (NAL). VCL incorporates

the signal processing functionality of the

Codec. This includes transform,

quantization, motion compensation pre-

diction and loop filter. VCL encoder

outputs encoded slices, which are subdivi-

sions of frame. Webcam Streamer

application needs H.264 encoded packets

ready to be transmitted on the network.

This calls for an additional step of data

handling. The NAL encoder comes into

action when H.264 encoded slice has to be

further encapsulated to be pushed on to

the network. X264 library set has a NAL

encoder section, which takes in the VCL

encoded slice units to give out NAL

encoded NAL units [10].

VI. Streaming Section

The former half of this paper had included

the application level flow incorporating

various blocks. One such unit is the Initializa-

tion Block. This block helps in setting up an

RTSP server. Webcam Streamer Application

extensively depends on Live555, a set of

libraries for multimedia streaming purpose.

To exactly understand the need for such a

server, the application has to be viewed in an

alternate manner. Webcam Streamer stands

as a proxy between the Webcam module and

the end client (say VLC). Thus whenever VLC

requests for a live webcam stream, the

application has to somehow detect this

notification and pass on the stream to the

client. All these duties are handled by an

RTSP Server. Live555 library set is developed

in a highly structured manner making it

easier for expansion.

 The server listens keenly on a predefined

port all the while the application is running.

Any change would trigger 'callback' functions

to carry out all the event handling. 'Callback'

is a piece of executable code that is passed

on as an argument to some other code.

Live555 event handlers use call back

mechanisms for handling events. Live555

library set supports both 'on-demand'

streaming as well as live streaming. 'on

demand' streaming in most cases are from

stored video files. Live streaming on the

other hand uses a live video source. The basic

structure of an event loop is as follows.

A. Initializing Block

The server initialization is succeeded by an

infinite loop, constantly waiting for events.

Implication from the pseudo-code construct

is clear; the loop keeps rotating, initially

grabbing events and then, calling the event

handler. Having seen the Basic event loop

structure, one can ponder on the method of

reception of an event. Three important

system calls for dealing with events are

select(), poll(), epoll(). Live555 has

incorporated select for monitoring events.

Fig 17: Event Loop Model

select() API enables the program to do a

few basic tasks: check whether there are

any incoming I/Os to be attended. Linux

manual page gives a formal description for

select as: “select() examines the I/O

descriptor sets whose addresses are passed

in readfds, writefds, and errorfds to see if

some of their descriptors are ready for

reading, are ready for writing, or have an

exceptional condition pending,

respectively”.

select() API has some features worth

mentioning; Primarily, it checks whether the

descriptors can be 'read' from or 'written' to

[11]. 'read' lets the server know a new packet

has arrived while 'write' notifies the server its

okay to reply to the corresponding

descriptor. Second, the timeout parameter

can be made null, meaning the select call

blocks indefinitely until a monitored

descriptor showcases some change.

An RTSP URL is created on behalf of the

webcam module by Webcam Streamer

Application which is later on used by the

client for getting the stream.

Fig 18: Select API

The word streaming would be more than fa-

miliar by now. What would happen when VLC

requests for a stream? What causes the flow

of packets across the network? To answer all

these questions, a deeper analysis of Stream-

ing Block is required. It is advised that the

reader has a copy of Live555 library set be-

fore proceeding to the coming sections

B. Streaming Block

Fig 19: Live555 Sub- classing

Framed source is one among many classes

from Live555 library set which contains

important APIs. getNextFrame() API takes in

the pointer address of the memory location

where NAL units are stored as a parameter to

later on push it for streaming . Thus direct

bridging between the encoder output and

Live555 libraries can be made feasible. As

suggested by Ross, architect of Live555

library set, FramedSource has been

sub-classed to exhibit a suitable

implementation for the webcam module. This

sub-class, WebcamDevice, holds functions

which directly invoke the webcam which in

turn drives other functions for pixel

manipulation as well as encoding. Video

taken in, on a frame basis by the encoder are

encoded and stored to a suitable memory

location. The address of each independent

NAL unit stored is pushed onto a queue which

is accessed inside the deliverFrame() function

inside WebcamDevice class.

The NAL headers are carefully parsed and the

payload is separated out. This is given to the

getNextFrame API, present in the parent

class. GetNextFrame() calls doGetNextFrame

() which in turn calls afterGetting(). afterGet-

ting() cyclically calls getNext-Frame() and this

cycle continues. One important thing to note

here is doGetNextFrame() has been virtually

defined allowing it to be implemented as per

the users choice if FramedSource is to be sub-

classed. This is exactly being done by

Webcam-Device sub-class with its own imple-

mentation of doGetNext-Frame(), probing

NAL queue to see if it is empty.

Fig 20: NAL Unit Transfer

OnDemandServerMediaSubsession is yet an-

other class that has been sub-classed.

WebcamServerMediaSession, the child class

does the job of transferring control to

WebcamDevice class. Though an instance of

WebcamServerMediaSession is created initial-

ly, the transfer of control takes place later on,

after the RTSP handshakes.

The memmove() call copies NAL unit address

onto fTo, a char pointer member within

FramedSource. Note that after-Getting() had

been called from WebcamDevice class to

pass on this object containing the NAL unit

address onto the parent class FramedSource.

If doGetNextFrame() results in an empty

queue with no NAL units, it returns without

blocking. Later when NAL units arrive into

the queue, event loop handles it as an event.

Fig 21: RTSP Handshakes

192.168.239.27 is the client IP(VLC), and

192.168.239.190 is the server IP. RTSP Hand-

shake in this scenario has been initiated by

OPTIONS which shows various other types

of requests. After few rounds of requests

and responses, a SETUP is being passed by

the client to the server. Each and every RTSP

command is handled by the event loop, as

mentioned in the previous section. On han-

dling SETUP, createNewStream-Source(), a

virtual function inside OnDemandServerMe-

diaSub-Session is called. The derived class,

WebcamServerMedia-Session has an alter-

nate definition of this same function which

in effect routes the call to this class.

WebcamDevice class constructor is being

called inside createNewStreamSource(),

defined inside WebcamServerMediaSession.

This constructor initializes the webcam

module and starts pushing NAL pointers into

the queue. The constructor in turn triggers

the call to deliverFrame().

VII. Practical Issues

Pixel manipulation as such is a challenging

task. The accuracy of chroma – luma merge

depends on the stability of the algorithm

used. One of the noted issues was an out-of

sync, at times, for the chroma luma

boundaries. Colour spread also appeared

randomly clogging the video sequence.

Fig 22: Slightly Distorted Chroma Channel

Yet another issue; latency. This problem had

been evident mainly for the first client

requesting the stream, as webcam is turned

on only on request from the client. The delay

is an accumulated sum of network delay,

playback delay, transmission delay. Delay

reduces with lower quality encoded video

transmission.

VIII. Furure Works

Live streaming is a broad domain. Time

constraints have always been a problem for

streaming live. A research based analysis for

reduction of latency could make the Webcam

Streamer more robust. This enhancement is

highly prioritized. Quick response to clients

are always an add on. Incorporating audio

capture into streamer would help the

streamer to look full fledged. Lateral work on

this area is also preferred.

REFERENCES

Pixel manipulation as such is a challenging task. The accuracy of chroma – luma merge depends on

the stability of the algorithm used. One of the noted issues was an out-of sync, at times, for the

chroma luma boundaries. Colour spread also appeared randomly clogging the video sequence.

 Andrew Fecheyr-Lippens, “A review of HTTP live streaming”

 Arjan Durresi and Raj Jain, RTP RTCP and RTSP - Internet protocols for real-time multimedia communications.

 H. Schulzrinne, A. Rao and R. Lanphier, “Real time streaming protocol (RTSP) ” RFC 2326, April 1778.

 Bill Dirks, Luc Gallant , “Video for Linux two – driver writers guide”, November 7 2005.

 Li Hui-jun, “Design and implementation of mobile video surveillance system based on V4L2” in press.

 Douglas A. Kerr, “Chrominance sub-sampling in digital images,” Copyright 2005, 2012 Douglas A. Kerr. May be reproduced

and/or distributed but only intact, including this notice. Brief excerpts may be reproduced with credit, January 17 2012

 Keith Jack, Video Demystified: A handbook for Digital Engineer, Fifth Edition, Newnes publicaiton

 Axis Communication, “H.264 compression standard, New possibilities within video surveillance ”.

 Alexander Hermans, “H.264/MPEG-4 advanced video coding”, Matriculation number: 284141, September 11, 2012.

 S .Wenger, M.M. Hannuksela, T. Stockhammer, M. Westerlund and D.Singer, “RTP payload format for H.264 video”, RFC

3784, February 2005

 Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, Operating Systems: Three easy pieces, Arpaci-Dusseau Books ,

March 2015 (version 0.70)

 http://lists.live555.com/pipermail/live-devel/2008-April/008416.html

 http://www.fourcc.org/

 https://trac.ffmpeg.org/wiki/Encode/H.264

Andrew%20Fecheyr-Lippens,%20“A%20review%20of%20HTTP%20live%20streaming”%5d
Arjan%20Durresi%20and%20Raj%20Jain,%20RTP%20RTCP%20and%20RTSP%20-%20Internet%20protocols%20for%20real-time%20multimedia%20communications.
H.%20Schulzrinne,%20A.%20Rao%20and%20R.%20Lanphier,%20“Real%20time%20streaming%20protocol%20(RTSP)%20”%20RFC%202326,%20April%201998.
Bill%20Dirks,%20Luc%20Gallant ,%20“Video%20for%20Linux%20two%20–%20driver%20writers%20guide”,%20%20November%209%202005.
Li%20Hui-jun,%20“Design%20and%20implementation%20of%20mobile%20video%20surveillance%20system%20based%20on%20V4L2”%20in%20press.
Douglas%20A.%20Kerr%09,%20“Chrominance%20sub-sampling%20in%20digital%20images,”%20Copyright%202005,%202012%20Douglas%20A.%20Kerr.%20May%20be%20reproduced%20and/or%20distributed%20but%20only%20intact,%20including%20this%20notice.%20Brief%20excerpts%20may%20be%
Douglas%20A.%20Kerr%09,%20“Chrominance%20sub-sampling%20in%20digital%20images,”%20Copyright%202005,%202012%20Douglas%20A.%20Kerr.%20May%20be%20reproduced%20and/or%20distributed%20but%20only%20intact,%20including%20this%20notice.%20Brief%20excerpts%20may%20be%
Keith%20Jack,%20Video%20Demystified:%20A%20handbook%20for%20Digital%20Engineer,%20Fifth%20Edition,%20Newnes%20publicaiton
Axis%20Communication,%20“H.264%20compression%20standard,%20New%20possibilities%20within%20video%20surveillance%20”.
Alexander%20Hermans,%20“H.264/MPEG-4%20advanced%20video%20coding”,%20Matriculation%20number:%20284141,%20September%2011,%202012.
S%20.Wenger,%20M.M.%20Hannuksela,%20T.%20Stockhammer,%20M.%20Westerlund%20and%20D.Singer,%20“RTP%20payload%20format%20for%20H.264%20video”,%20RFC%203984,%20February%202005
S%20.Wenger,%20M.M.%20Hannuksela,%20T.%20Stockhammer,%20M.%20Westerlund%20and%20D.Singer,%20“RTP%20payload%20format%20for%20H.264%20video”,%20RFC%203984,%20February%202005
Remzi%20H.%20Arpaci-Dusseau%20and%20Andrea%20C.%20Arpaci-Dusseau,%20Operating%20Systems:%20Three%20easy%20pieces,%20Arpaci-Dusseau%20Books%20,%20March%202015%20(version%200.90)
Remzi%20H.%20Arpaci-Dusseau%20and%20Andrea%20C.%20Arpaci-Dusseau,%20Operating%20Systems:%20Three%20easy%20pieces,%20Arpaci-Dusseau%20Books%20,%20March%202015%20(version%200.90)
http://lists.live555.com/pipermail/live-devel/2008-April/008417.html
http://www.fourcc.org/
https://trac.ffmpeg.org/wiki/Encode/H.264

About the Author

Rohit Philip Mathew is an Embedded Software Engineer

within VVDN Technologies. He worked with Cognizant

Business Consulting prior to joining VVDN Technologies.

Being an Embedded Enthusiast, He is focused on learning

the current trends surrounding EE-CS Domain. Rohit has a

Bachelors Degree in Applied Electronics and

Instrumentation Engineering from Rajagiri School of

Engineering and Technology, Kerala.

